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MAXIMUM-ANGLE CONDITION AND TRIANGULAR 
FINITE ELEMENTS OF HERMITE TYPE 

ALEXANDER ZENISEK 

ABSTRACT. Various triangular finite CO-elements of Hermite type satisfying 
the maximum-angle condition are presented and corresponding finite element 
interpolation theorems are proved. The paper contains also a proof that very 
general hypotheses due to Jamet are not necessary for such finite elements. 

1. INTRODUCTION 

The problem of finite element interpolation theorems under the maximum- 
angle condition was studied in several papers (see [1, 2, 3, 5, 6, 9], [11, pp. 209- 
213]); however, all results concern only triangular finite elements of Lagrange 
type. (The remark on finite elements of Hermite type in [2, p. 222 ] is not 
sufficiently general-see Remark 5.3.) 

This note is focused on triangular finite elements of Hermite type which 
satisfy estimates under the maximum-angle condition and are useful in appli- 
cations. Our results show that, contrary to finite elements of Lagrange type, 
sets of parameters uniquely determining such finite elements are different from 
sets of parameters uniquely determining triangular finite elements which satisfy 
only the minimum-angle condition. 

In ??2 and 3 the simplest polynomials of Hermite type, polynomials of third 
degree, are studied. In both sections nine of ten parameters uniquely deter- 
mining these polynomials are the same: function values and first derivatives 
prescribed at the vertices of a triangle. In ?2 the tenth parameter is chosen as 
the normal derivative at the midpoint of the smallest side of a triangle. This 
choice enables us to modify .and generalize the proof of [ 14, Theorem 2] in such 
a way that the estimates for function values do not depend on the geometry of 
the triangle, and in the estimates for the first derivatives the sine of the mini- 
mum angle of the triangle is substituted in the denominator by the sine of the 
next larger angle of the triangle. 

A first version of ?2 was published in [13, Appendix 4]. However, the in- 
terpolation result is not introduced there in an optimal form and its proof is 
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unnecessarily complicated. Further, the assertion of [13, Remark A.4. 13] is not 
correct; its revision can be found in Propositions 3.4 and 3.5 of this note. 

In ?3 we first prove that the finite element from ?2 does not satisfy Jamet's 
hypotheses [6]. However, by modifying slightly the definition of the tenth pa- 
rameter, Jamet's theory can be applied. 

In the remaining two sections some other possibilities are briefly mentioned. 

2. SOME ELEMENTARY ESTIMATES 

The aim of this section is to prove Theorem 2.1 and its consequences for the 
finite element interpolation theory (see Theorems 2.7 and 2.8). 

2.1. Theorem. Let T be a closed triangle with the interior T and vertices 
Pi, P2, P3. Let 

a = dist (P2, P3), b = dist (Pi, P3), c = dist (Pi, P2), 

and let a, f8 and y be the angles at P1, P2 and P3, respectively. Let the 
vertices be denoted in such a way that 

(2.1) a<b<c, a<,2<. 

Let ( E Cl (T), and let 

(2.2) IDi((P)I < M4 Vlil = 4, VP E T, 

(2.3) Di((Pj) = O Vlil < I (j = 1, 2, 3),1 a (P (Qi) = O, 
ana 

where Q1 is the midpoint of the side P2P3 and na the unit normal to P2P3. 
Then 

(2.4) koP(P)I < 96 (1 +4 ( 4c4 VP E T 

(2.5) 1 (P)l < 15 (1 + 5 (- )-i M4 C3 VP E T (j= 1, 2). 

Theorem 2.1 is a generalization of [ 14, Theorem 2]. Its proof is based on the 
following four lemmas. 

2.2. Lemma. Let SI, 52 be two noncollinear directions making an angle to. 
Let P (P) = kj (j = 1, 2), P being a point of the (xl , x2)-plane. Then 

2L&(P) < (Ik,l + 1k21)/IsinwcI (j = 1, 2). Ox1 

Further, let sI and 52 be two directions orthogonal to one another. If 1 !7 (P)I < 

ki (i = 1, 2), then we have for an arbitrary direction s 

| a V (P) | Ik I+ jk21. Os 

2.3. Lemma. Let g(O) = ,I, g(l) = q2, g'(O) = kI, g'(l) = k2 and g(4)(S)1 
<K4 in (0,1). Then for se[O,l] 

(2.6), Ig(s)I < max IlXl + 27 (1k, I + Ik2) + 16.241 
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(237) ig' (s)l < 2 1 (1Nl l + n2D) + max lkjl + - 

Further, if g(0) = g(l) = g'(0) = g'(l) = 0, then 

(2.8) Ig"(s)l < _K4 

2.4. Lemma. Let g(0) = ql, g(l/2) = q2 g(l) = q3 and jg(3)(s)1 < K3 in 
(0, 1) . Then for s E [0, 1] 

(2.9) Ig(s)l < 4max Iqj I+ -63 K31I 

(2.10) Ig'(s)l ? -maxIlqjl + -K312. 

2.5. Lemma. Let g(0) = qI, g(l) = q2, g'(l) = k, and Ig(3)(s) I <K3 in 
(0, 1). Then for s E [0, 1] 

(2.1 1) Ig(s)l < max lqil + -IkI I + 8K3 

Lemmas 2.2-2.5 are taken from [14] with a modification in (2.6) and im- 
provements in (2.7) and (2.1 1). 

Proof of Theorem 2.1. We restrict our considerations to the case 

(2.12) IDi((P)l < M4 Vlil =4, VP E T. 

In the case (2.2) we can use the trick with an inscribed triangle T c T in the 
same way as in [14]. 

We have by Lemma 2.3 (with g = eIp2p3 ) and assumptions (2.3) and (2.12) 

(2.13) P2P3 < 4 4a M4a 

(2.14) < 14 M4a 1M4 

where 0/d a denotes the derivative in the direction of P2P3 . Similarly, Lemma 
2.4 with g = tepl/9nalp2p3 yields 

(2.15) (ana P2P3 M4a3 

Using estimates (2.14), (2.15) and Lemma 2.2, we find for an arbitrary direction 
s 

(2.16) a( I P2P3) < 63 M4a3. 

Let P E T, P :$ PI, and let B be the point of the segment P2P3 which 
lies on the straight line determined by PI and P. Setting I = dist (B, P1) and 
considering the function g = (0 P B' we obtain by means of Lemma 2.3 and 

(2.3), (2.12), (2.13), (2.16) 

(2.17) ko(P)I < 
I 

M4a4 + 
I 

4M414 
9627 63 i6-2 
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(2.18) |2 96 M4 4+ 63 M4a3 + 1M4 

Estimate (2.17) implies (2.4). Estimate (2.18) will be used in deriving (2.5). 
Relation (2.8) from Lemma 2.3 with g = ( IP2P3 and relation (2.10) from 

Lemma 2.4 with g = 0p/OlnaIP2P3 together with assumptions (2.3) yield 

02 r 2 022 
| (B) <2M4a , laa (B) <M4a2 

Hence, according to the second part of Lemma 2.2 where we set V = 0 ( / a, 

0 2(0 
(2.19) a0as (B) < 3M4a2. 

Using Lemma 2.5 with g = a(0/aaIp1B and taking into account relations (2.3), 
(2.14), (2.19), we find 

(2.20) |a(P) ? M3 + M M4a2 + 81M4 

Inequalities (2.18) and (2.20) together with Lemma 2.2 imply (2.5). 5 

Now we develop some consequences of Theorem 2.1. 

2.7. Theorem. A polynomial P(X1, X2) of degree not greater than three in two 
variables is uniquely determined by its ten values 

Op 
(2.21) Dip(Pj), lil < 1 (j= 1, 2, 3), On (Q), 

where the meaning of the symbols Pi, Qi and na is the same as in Theorem 
2.1. 
Proof. It is sufficient to prove the uniqueness. Let us assume that the values 
(2.21) are equal to zero. Setting (0(xI, x2) = p(x1, x2) in Theorem 2.1, we 
have M4 = 0 and estimate (2.4) implies p(xI, x2) 0. 5 

2.8. Theorem. Let u E CI(T), and let ID1u(P)I < M4 for all IiI = 4 and all 
P E T. Let p(x1, X2) be the polynomial of degree not greater than three which 
satisfies the relations 

Op au 
(2.22) D1p(Pj) = D1u(Pj), lil < l ( = 1,2,3), ,9n (Qi) = (Qi) a na Ona 
Then the function 

(2.23) (0(xI, x2) u(x1, X2) -p(x , x2) 

satisfies relations (2.4) and (2.5). 
Proof. It follows from the assumptions of Theorem 2.8 that the function (2.23) 
satisfies all conditions of Theorem 2.1. n 

It follows from Theorem 2.8 that triangular finite elements with polynomi- 
als of third degree uniquely determined by the parameters (2.21) can be used 
in triangulations satisfying the maximum-angle condition: Estimate (2.5) re- 
quires the next-to-smallest angles of all triangles to be bounded away from zero. 
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This requirement (we call it the second-angle condition) is equivalent with the 
maximum-angle condition. 

2.9. Remark. The method of the proof of Theorem 2.1 does not work success- 
.fully in the case of the classical Hermite triangular finite element of third degree, 
where the last condition (2.3) is substituted by q(PO) = 0, Po being the center 
of gravity of T, because we obtain only I(62p/Oa9naIp2p3)I < KM413/a (I = 

dist(PIQj)) and l/a -oo with a- O. 

3. JAMET'S HYPOTHESES. ESTIMATES IN SOBOLEV NORMS 

First we compare the finite element from ?2 with Jamet's theory [6]. Jamet's 
hypotheses read as follows: 

Let 2(X, Y) denote the set of all linear bounded operators from a normed 
space X into a normed space Y. Let k, 1, m be three positive integers, and 
let H E 5(W" P(T), Wm'P(T)), where p E [1, ox], be an operator satisfying 
the following two hypotheses: 

(H. 1) We have 
Hu = U VU E Pk,,n 

where Pk,, denotes the set of all polynomials in n variables of degree not 
greater than k. 

(H.2) There exists a unit vector 4 such that 

(3.1) 9 u(P) VP E T K (u )(p)= 0 VPET. 

(We restrict ourselves to this special type of (H.2) because we are interested 
only in estimates of type (3.3).) 

In the case 

(3.2) k=1=3, m=l, n=2, pE[1,c'] 

it follows from [6, Theorem 2.2]: 

3.1. Lemma. Let T be the same triangle as in Theorem 2.1 and let us denote 
hT - C, aT a, f/T -,, YT - y. Let Sjk and sfl be the unit vectors 
parallel to the sides PjPk and PjP1, respectively (j = 1, 2, 3; k : 1). Let 
n E y(W3'P(T), W1 P(T)) be an operator satisfying hypotheses (H.1) and 
(H.2) for S = sjk and 4 = sjl. Then we have 

(3.3) J l-Hu II1p T? Ch U1 , V 4,( 
cos(max(Qj/2, 7r/2 - /2)) 1U14,p,T VU E 

where '1 = aT, 62 = flT, l3 = YT and C is a constant not depending on u 
and T. 

3.2. Remark. In the case j = 3 the denominator cos(max(YT/2, 7r/2 - YT/2)) 
can be replaced in (3.3) by COS(YT/2), YT being the maximum angle of T (see 
Remark in [6, p.55]). 

In the case j = 2 the form of the functions u from (3.1) is described in the 
following lemma. 
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3.3. Lemma. Let us use the notation x =- xi, y x2. If au/as23 0, then 
u(x, y) has the form 

(3.4) u(x, y) = F(r1) F(iq(x, y)) -F([-j732(x - X2) + Y32(Y - Y2)]IJ2), 

where F(r) is an arbitrary function differentiable on [0, 1] and where 

(3.5) J2 = X32Y12 - 232X12 

(3.6) Xjk =Xj-Xk, Yjk =Yr-Yk (j,k=1,2,3; j# k). 

If a u/as21 _ O, then 

(3.7) u(x, y) = G() =G(4(x, y)) -G([jl2(x - x2) - Y12(Y - Y2)]IJ2), 

where G(4) is an arbitrary function differentiable on [O, 1]. 

Proof. Let To be the triangle lying in the Cartesian coordinate system (4, i ) 
and having the vertices RI(0, 1), R2(0, 0), R3(1, 0). The transformation 

(3.8) x = x(4, ) -- x2 + Y324 + Y12q, Y = Y(4, ) -Y2 + Y324 + Y12?1 

maps To one-to-one onto T in such a way that Rj *-+ Pj (j = 1, 2, 3) (for 
the proof see, for example, [13, Theorem 9.1]). The inverse mapping has the 
form 

(3.9) 1 = [y72(x - x2) - Y12(Y - Y2)]/J2, ? = [-H32(X - x2) + x32(Y - Y2)]IJ2- 

Let us define the function 

(3.10) u*( , )= u(x(W , ), y(4, n)). 

Relations (3.8), (3.10) imply 

au* a u au -au 
(3.11 ) a< (4?)= u(x, y)X32 + y (x,XY)Y32= 132 (x,y)- 

Similarly, 

(3.12) au* (, au) = 112au (x, y), 

aS21 (,) 
where 

(3.13) j2 2+Y-2 (j = 1, 3). 

If au/aS23 0, then, according to (3.11), 

Integrating this relation, we obtain 

(3.14) u*(q,)F(i)= 

As u(x, y) = u*(4(x, y), q(x, y)), relation (3.14) gives (3.4). 
If au/aS21 0, then we derive (3.7) by means of (3.12) in a similar 

way. ? 
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3.4. Proposition. The interpolation operator defined by relations (2.22) sat- 
isfies Jamet's hypothesis (H.2) for both S = 521 and S = s23 if and only if 
,B =7r/2, ,B being the angle at P2. 

Proof. Let the notation be the same as in Lemma 3.3 and its proof, and let 
us choose the orientation of the unit normal na to the side P2P3 such that 
na = (W32, -x32)/132. Let V32 = (K, i) be such a vector in the (4, q)-plane 
that the point P2 + na corresponds one-to-one to the point R2 + v32 in the 
transformation (3.8). Then we have 

(3.15) K = (Y12Y32 +jT12W32)/(132J2), =-132/J2 

and 

(3.16) K = O if and only if = - 

Let F(l) be an arbitrary differentiable function on [0, 1] and let q*(,, q) E 
P3, 2 satisfy the conditions 
(3.17) 

Dlq*(Rj) = DIF(Rj), jil < I (j = 1, 2, 3) , K< *(SI ) + Aq* (SI ) = AF, (SI), 

where the indices 4 and q denote the derivatives with respect to 4 and , 
respectively, and where SI is the midpoint of R2R3. It is easy to see that 
conditions (3.17) are satisfied uniquely by the polynomial 

q*(~, E ) =F(O)(1 - 3 q2 + 2 q3) + F'(0)(q - 2q 2 + q3) 

+ F(1)(3 q2 - 2q3) + F'(1 )(_q2 + q3) 

Thus, aq*/Oa, - 0 independently of the value of K. Hence the polyno- 
mial q(x, y) = q*(E,(x, y), (x, y)), where ((x, y), (x, y) are the right- 
hand sides of (3.9), satisfies conditions (2.22) with u(x, y) = F(q(x, y)) and 
aqlaS23 0. 

Let now G(Q) be an arbitrary differentiable function on [0, 1], and let 
P*(4, ?7) E P3,2 satisfy 
(3.18) 

Dip*(Rj) = D1G(Rj), l il < 1 (j = 1, 2, 3), Kp*(S1) + Ap*(SI) = KG<(S1). 

If K = 0, then conditions (3.18) are satisfied uniquely by the polynomial 

p*( C) = G(O)(1 - 342 + 243) + G'(0)(4 - 2Q2 + 

+ G(1)(3<2 - 2<3) + G'(1)(-_2 + <3) 

and we have ap*/aq 0_ O. Thus, the polynomial p(x, y) = p*(c(x, y), q(x, y)) 
satisfies conditions (2.22) with u(x, y) = G(4(x, y)) and aP/Os21 0. 

Let now K :$ 0 and let us choose G(4) = 45. Then conditions (3.18) are 
satisfied uniquely by 

(3.19) P(,)=-2<52 + 3<53 + KA gq _ 42q _ 4q2. 

In this case, Op*/laq $ 0. 
The polynomial p(x, y) = p*( (x, y), i (x, y)) , where p*(4, ) is given by 

(3.19), satisfies conditions (2.22) with u(x, Y) = (D712(X-X2)- l2(Y-Y2) 
and we have (Op/S21)(X, y) $ 0 at almost all points (x, y) E T. (It is 
interesting that in the case G(4) = 44 we have p*(g, ) = _42 + 243 .) 
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The results obtained in this proof and Lemma 3.3 imply the assertion of 
Proposition 3.4. 5 

In the case j = 3 we can prove in a similar way: 

3.5. Proposition. The interpolation operator defined by relations (2.22) sat- 
isfies Jamet's hypothesis (H.2) for both S = 531 and S = 532 if and only if 
y = 7r/2, y being the angle at P3. 

The proof follows similar lines as the proof of Proposition 3.4. Instead of 
Lemma 3.3 we use the following lemma: 

3.6. Lemma. If Ou/ds32 0, then u(x, y) has the form 

(3.20) u(x, y) = F([-y23(X- X3) + T23(Y - Y3)]IJ3), 

where F(i1) is an arbitrary function differentiable on [0, 1] and where 

(3.21) J3 = X23Y13 - X13Y23- 

If du/0s3l = O, then 

(3.22) u(x, y) = G([7l3(x - X3) - Y13(y - y3)]/J3), 

where G(,) is an arbitrary function differentiable on [0, 1]. 

3.7. Remark. a) As IJ21 = IJ31, the set of all functions (3.4) is identical with 
the set of all functions (3.20). 

b) In the proof of Lemma 3.6 the triangle To has the vertices RI (0, 1), 
R2(l, 0), R3(0, 0) and instead of (3.8) we have 

x = x(4, 1) -x3 + X234 + x13n, y = Y'(4, ?1) -Y3 + Y234 + YI 34 
Comparing Propositions 3.4 and 3.5 with Theorem 2.8, we see that Jamet's 

hypothesis (H.2) is not necessary for obtaining pointwise estimates for the gra- 
dient under the maximum-angle condition. However, the problem as to how to 
obtain estimates in the Sobolev norms for p < oc in the case of the element 
introduced in ?2, when the sides PI P2 and P2P3 (or PIP3 and P2P3 ) are not 
perpendicular to one another, remains open. 

Now we show that modifying slightly the definition of the tenth parameter, we 
obtain a triangular finite element of Hermite type which satisfies the hypotheses 
of Jamet's theory. 

For every u E Cl (T) we define flu E P3 ,2 by the relations 
(3.23) 

D1(Hu)(Pj) = D'u(Pj), hil < I (j = 1, 2, 3), WI(Q,) = d u 
I) 

It is easy to see that relations (3.23) define Hu uniquely. (If the right-hand sides 
of (3.23) are equal to zero, then also (a(r1u)/dna)(Q,) = 0 and (Hlu)(x, y) - 
0, according to Theorem 2.7.) Thus the operator H satisfies hypothesis (H. 1) 
with k = 3, n = 2. Now we verify that H satisfies also hypothesis (H.2) with 
' =S21 and (=S23. 

3.8. Lemma. Let the function u(x, y) be given by (3.4), and let q E P3, be 
the polynomial in one variable s uniquely determined by the conditions 

(3.24) q(O) = F(O), q(l) = F(l), q'(0) = F'(0), q'(1) = F'(1). 
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Then the polynomial 

(3.25) (Hlu)(x, y) = q(?I) _ q([-j732(X - x2) + T32(Y -Y2)]I2) 

satisfies relations (3.23), and we have 

((6(nu)(x y) 0. 
(3.26) O2 
3.9. Lemma. Let the function u be given by (3.7), and let p E P3, I be the 
polynomial in one variable s uniquely determined by the conditions 

(3.27) p(O) = G(O), p(l) =G(), p'(O) =G'(O), p'(l) = G'(l). 

Then the polynomial 

(3.28) (Hu)(x, y) = p(O) p([yl2(x - x2) - T12(y - Y2)]IJ2) 

satisfies relations (3.23) and we have 

(3.29) asnu (x Y) -='O. 

The proof of Lemmas 3.8 and 3.9 follows from the rule of differentiating a 
composite function. 

3.10. Lemma. We have n E 5(W3'P(T), W1'P(T)), where the operator n 
is defined by (3.23) and where p e [l, x]. 
Proof. The linearity of n is obvious, the boundedness is an easy consequence 
of the Sobolev imbedding lemma (or, in the case p = 1, of the fact that 
W2,I(T) c C(T) (see [1O, p. 300])). 0 

Lemmas 3.1, 3.3, 3.8 - 3.10 imply: 

3.1 1. Theorem. Let u E W4',P(T), where p E [1, ox], and let the operator n 
be defined by (3.23). Then estimate (3.3) holds, i.e., 

(3.30) IU -HIUI ,p,T? C4 
U4,,T 

cos(max(flT/2, 7r/2- fiT/2)) 

The following theorem can be obtained similarly: 

3.12. Theorem. If we substitute 521 in (3.23) by 53, then we have for u E 
W4 P(T) with p E [1, xc] 

(3.31) |u -nu|l ,p,T < To( I U14,p, T- 
COS(YT/2) 

3.13. Remarks. (a) Besides (3.30) and (3.31) we have, according to [6, Theo- 
rem 2.2], 

(3.32) IIu p uI,p,T < Ch 4Iu4 TX 
In the case p = 2, estimate (3.32) can be obtained by standard devices (see, 
e.g., [4]). 

(b) The parameters (a(flu)/Osj1 )(Q ) ( i = 2, 3) are parameters of the sec- 
ond kind (for terminology, see [13, p.1 57]), i.e., they have no influence on the 
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global smoothness of a global finite element function defined in a given trian- 
gulation. If two such parameters meet at the midpoint of the common side of 
two adjacent triangles, then they have a common value only by chance. 

(c) The parameter (&p/9fla)(Qi) from ?2 is also a parameter of the second 
kind. Contrary to the parameters (a(I1Iu)/Osji)(Qi), it has the advantage that 
these two parameters have a common value at the midpoint of the common 
side of two adjacent triangles (when na is defined for both triangles in the 
same way); from the point of view of a triangulation they are defined by one 
parameter. On this common side the global finite element function is not only 
continuous but it has also continuous first derivatives. 

(d) If we substitute the value ( /flana)(Q1) by (ao/dsj1)(Q1) in Theorem 
2.1, then we can derive estimates of the same type (2.4), (2.5). The numerical 
constants will be only a little different. 

3.14. Remark. Let Q2 and Q3 be the midpoints of the sides P1 P3 and PI P2, 
respectively. If we substitute Qi and S21 in (3.23) by Q3 and S23, respec- 
tively, then estimate (3.30) holds. If we substitute Qi and 521 in (3.23) by 
Q2 and S32 (or S23), respectively, then estimate (3.31) holds. In the remain- 
ing two cases Q2, S12 and Q3, S13, we obtain estimates for gradients with 
cos(max(aT/2, 7r/2 - aT/2)) in the denominator. These two cases are incon- 
venient in applications when the maximum-angle condition is required for tri- 
angulations only. 

4. SOME HIGHER-DEGREE POLYNOMIALS 

In ??2 and 3 we modified the classical third-degree Hermite triangular finite 
element in two different ways and obtained two finite elements permitting esti- 
mates under the maximum-angle condition. In this section we generalize these 
constructions. We shall modify the family introduced by Koukal in [7] and [8]. 
4.1. Theorem. Let u e Ck(T) (k > 1). A polynomial p E P2k+1,2 is uniquely 
determined by the conditions 
(4.1) Dip(Pj)=Diu(Pj), IiI<k (j=1,2,3), 

(4.2) aOrp U aru()) (4.2 09a(Q )=,nr(5 )(j=l,...,r; r=l,...,k), 

where the symbol 0/lna has the same meaning as in Theorem 2.1 and Q(,.... 
Q(r) (1 < r < k) are the points dividing the side P2P3 into r + 1 parts of the 
same length. 

4.2. Theorem. Let u e Ck(T) (k > 1). A polynomial flu E P2k+1,2 is 
uniquely determined by the conditions 
(4.3) D'(1u)(Pj) = D'u(Pj), if ? 1 (j=1 , 2 3), 

(4.4) ar(llU)Qr) ar0u 0Q(r)) (i, = I ... , r; r =1..,k), 
s31 3 

where a/5S31 denotes the derivative in the direction of the side P3P1. 

For k = 1 the assertions of both theorems were proved in ??2 and 3. In the 
case k > 2 the proof is a simple modification of the proof of 113, Theorem 
17.1], and we omit it. 

Generalizing a little the considerations from ?3, we can prove 
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4.3. Theorem. Let u E W2k+2 P(T), where k > 1 and p e [1, 0], and let 
the operator n be defined by (4.3), (4.4). Then 

Ch2k+ 1 

(4.5) IU -flIIUl,p, T<C T I UI2k+2,p, T. 
cOS(YT/2) 

4.4. Remarks. (a) In the case p = 2, standard estimates give 

jj -fuIIo,T ? Ch 2k+2uIk2T IUIlUl 
- I C T I U 12k+2, T 

(b) A generalization of Theorem 2.1 to the case of interpolation polynomials 
introduced in Theorem 4.1 is possible. Instead of the special Lemmas 2.3-2.5 
we can use [12, Theorem 2]. We obtain the estimates 

ko (P)I ? CM2k+2c2k+2 S a f(P) < i M2k+2c2k+l VP E T (j = 1, 2). I(P(P)l < CM2k+2C a xj sin f3 +2 

Details are omitted because they are laborious. 

4.5. Remark. The construction of finite elements introduced in Theorem 4.1 
implies the following conjecture: It is impossible to construct a triangular finite 
Cl -element which satisfies the maximum-angle condition. 

5. SOME REMARKS ON THE CUBIC ELEMENT 

We show by an example that the classical cubic Hermite triangular finite 
element does not satisfy Jamet's hypothesis (H.2) even in the simplest case. 

Let u(x, y) = y4, and let the triangle T have the vertices P1 (0, 0), P2(1, 0), 
P3(0, 1). Then the polynomial satisfying the first nine conditions (2.22) and 
condition p(PO) = u(Po), where Po is the center of gravity of T, has the form 

(5.1) p(X,y)=2 2 33 

We see that 9u- 0 while 9P 54 0 in T. Thus, hypothesis (H.2) is not satisfied 
and we cannot apply Jamet's theory on this finite element. Neither can the 
estimates of ?2 be modified to this case (see Remark 2.9). 

Let us use the same notation as in Theorem 2.1, and let P* be the point 
lying on the segment P1 Qi and such that dist (P*, Q1) = El, where 0 < e < 3 

is fixed and l = dist (P1, Q1) . (If P* _ PO, then E= 

5.1. Proposition. A polynomial p E P3,2 uniquely determined by the parame- 
ters 

Dip(Pj), il <(j1=1,2,3), p(P*), 

where the point P* is defined above with e = a2/(21)2 permits estimates for the 
gradient under the maximum-angle condition. 

The proof follows similar lines as the proof of [13, Theorem A.4.8] and is 
omitted. 

5.2. Remark. It is clear that a polynomial p e P3,2 from Proposition 5.1 does 
not satisfy Jamet's hypothesis (H.2). 
5.3. Remark. In [2, p. 222 ] the parameters 

(5.2) D'p(Pj), il < 1 (j = 1, 2, 3), ydxdy 
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were considered in connection with the maximum-angle condition for a cubic 
triangular finite element on a right triangle with the sides P1 P2 and P2P3 lying 
on the axes x and y, respectively. However, parameters (5.2) do not determine 
in all cases a polynomial p E P3 2 uniquely. To prove this, let us consider 
a triangle with vertices Pi(xi, yi) (i = 1, 2, 3), and let To be the triangle 
lying in the (4, I)-plane with vertices P*(O., 0), P2*(1, 0), P3*(0, 1). The 
transformation 

X =X(4, 1) XI +X-24 + T3, Y =Y(4, 1)--YI + Y24 + 3X1 

where 

x-j=xj-xj, y1=Yj-Yl (j=2,3), 

maps the triangle To one-to-one onto T. Let us set 

p*(, C ) = p(x(W , C), Y(@, )). 

If all ten parameters (5.2) are equal to zero, then 

(5.3) Dip*(Pj*) jil < I1 (j = 1, 2, 3), 

(5.4) f X3Y3 2 + (X2Y3 + x3y2) X2Y2- dXd =O. 

Relations (5.3) imply 

(5.5) p* (4 ~ ) = K1( 1 - - - ). 

Inserting (5.5) into (5.4), we obtain 

(5.6) K{2(x2y2 + xy3) - (y2h + x3)2)} = 0. 

If the difference in braces is different from zero, then (5.6) implies K = 0 and 
the parameters (5.2) determine uniquely p E P3 2. However, if 

(5.7) 2(x2Y-2 + X3y3) = X2y3 + X3Y2, 

then (5.6) is satisfied with K # 0, and p(x, y) # 0 according to (5.5). 
Let us describe these situations. We cannot have simultaneously x2 = x3 = 0 

(and similarly Y-2 = Y3 = 0 ). Let x2 #4 0. If Y-2 = 0, then (5.7) gives X3 = x2/2 
with arbitrary Y3 54 0. Conversely, if x3 = x2/2, then (5.7) implies Y-2 = 0. 
In the other cases, 

Y3 =(x2 3)Y2 (Y2#O, x-2# 2x3). 

The situation X3 54 0 can be treated similarly with the same results. 
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